
! 

f 
C i 

5 lT-.?d; 

'. 



. 
, 
I 

L 

THE BLASIUS EQUATION 

WITH THREE-POINT BOUNDARY CONDITIONS 

by 

Luigi G. Napolitano 

This research was supported by the 

National Advisory Committee for Aeronautics 

under Contract Naw-6480 

Polytechnic Institute of Brooklyn 

Department of 

Aeronautical Engineering and Applied Mechanics 

January 1957 

PIBAL Report No. 319 



1. 

THE BLASIUS EQUATION 

WITH THREE-POINT BOUNDARY CONDITIONS+ 

Luigi G. Napolitano* 

The occurrence of t he  B l a s i u s  equation subjec t  t o  three-point boundary 

conditions i n  a variety of problems involving the  mixing of two uniform 

streams i s  shown. A so lu t ion  of t h i s  equation, with the  t h i r d  boundary con- 

d i t i o n  applied t o  the  B l a s i u s  function i t s e l f ,  is presented by way of a 

series i n  terms of the r a t i o  ?, = 2 where the  u 's are the inv i sc id  

streams' ve loc i t i e s .  The first th ree  u1 appro-tions are e x p l i c i t l y  

u -u 
i 

expressed i n  terms of t h e  repeated i n t e g r a l s  of the  complementary e r r o r  

function (i e r f c  q) and of the  repeated i n t e g r a l s  of t he  square of t he  

functions i e r f c  7). 

n 

n Pert inent  formulae permitt ing t h e  rapid evaluation of 

these  functions f o r  pos i t ive  and negative values of the  independent var iab le  

are developed. 

+ This research w a s  supported by t h e  National k r o n a u t i c s  Committee, 
under Contract Naw-6480 

* Research Group Leader 
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Symbols 

Specif ic  heat  

Blasius function (see SS. 8 )  

S t a t i c  pressure 

Velocity components 

Cartesian coordinates 

Prandtl  number 

Gas constant 

Non-dimensional stagnation enthalpy function (see Eq. 2 )  

Abs o lu  t e temperature 

Reference temperature 

(u1+u2)/2 

Stewartson var iables  (see Eq.4) 

Subscripts ( )  and ( >  
1 2 

r e f e r  t o  the two invisc id  uniform free streams 

Blasius variable (see E q .  8) 

viscosi ty  

Refe rence kfnematic v i scos i ty  

Density 

Reference densi ty  

-u )/u +u (P 2 1 2 
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3.  

Introduction 

The solut ion of the  Blasius equation with three-point boundary conditions 

has per se a considerable academic in t e re s t .  I n  addi t ion,  tabulated values 

of the  Blasius function can be used t o  advantage i n  a variety of problems 

connected w i t h  mMng phenomena wherein the sub Sect equation occurs. 

The first and most immediate s tep  i n  the  study of problems connected with 

or influenced by the  in t e rac t ing  of streams is  the so lu t ion  of the  mixing of 

two uniform streams i n  the  absence of axial pressure gradients.  

can near ly  always be reduced t o  the so lu t ion  of the  Blasius equation sub jec t  

This problem 

t o  three- in tboundaq conditions,  the only exception being the  case of com- 

press ib le  tu rbulen t  mixing. 

I n  the case of laminar incompressible m i x i n g  of two uniform streams the 

r educ ib i l i t y  of the bas ic  Prandt l  equations t o  the  B l a s i u s  equations with 

the per t inen t  boundary conditions was first shown by Gzrtler . It, seems, 
1 

however, t h a t  there  are some material e r ro r s  i n  the so lu t ion  given by t h a t  

author (see,  f o r  instance,  Ref .  2). The t h i r d  boundary condition imposed by 

Ggr t le r  i s  d i f f e r e n t  from .the one imposed i n  the  present  report .  T h i s  f a c t  

could be exploi ted i n  carrying out  an in t e re s t ing  inves t iga t ion  as t o  t he  

general  influence of t h i s  t h i r d  boundary condition on the  so lu t ion  of mixing 

problems. It is  w e l l  known, i n  f a c t ,  t h a t  they exh ib i t  a c e r t a i n  indeterminacy 

i n  t h e  boundary condition concerning the  y-component of the ve loc i ty  s ince t h i s  
.c 

component i s  not known, a p r i o r i ,  anywhere i n  t h e  flow f i e l d .  Several hypothe- 

sis have been suggested as t o  the bearing of t h i s  indeterminacy on the  or ienta-  
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t i o n  of the  wake and on the ve loc i ty  p ro f i l e s .  

ca r r i ed  out  by Kuethe’ f o r  t he  turbulen t  incompressible mixing, but 

nothing has ever been done f o r  t he  compressible case. 

An inves t iga t ion  w a s  

4 
The present author has recent ly  shown t h a t  t he  laminar mixing of 

two uniform streams can be reduced t o  the  so lu t ion  of t he  Blasius 

equation subject  t o  three-point boundary conditions alsO i n  t h e  com- 

press ib le  case. 

equatlon has been already given by Pai  

t o  be performed f o r  each case under consideration, 

w i l l  introduce some obvious and e s s e n t i a l  advantages. Once the  tabula- 

t i o n  of t h e  Blasius function i s  available, time consuming i t e r a t i o n  pro- 

cesses  are eliminated completely. 

f o r  a l l  and a l l  t h e  inves t iga t ions  connected with the  laminar mixing of 

two compressible streams w i l l  be readi ly  d e a l t  with. Thus, f o r  instance,  

t h e  e f f e c t s  of t h e  temperatures of t h e  streams on t h e  mixing character-  

i s t i c s  a re  determined very quickly by means of straightforward manipula- 

t i ons  of the tabulated values. 

A solut ion of t he  per t inent  heat-conduction l i k e  

2 by w a y  of an i t e r a t i v e  process 

The present approach 

The so lu t ion  will be given once and 

5 As the  author has shown elsewhere the  tu rbu len t  incompressible m i x -  

i ng  of two uniform streams can a l s o  be reduced t o  t h e  Blas ius  equation. 

Thus i t s  solut ion w i l l  remove t h e  d i scon t inu i t i e s  i n  t h e  ve loc i ty  p r o f i l e s  

curvature which exist  i n  the  so lu t ions  previously given. 

i n  f a c t ,  t h a t  i n  the  t o t a l  d i f f e r e n t i a l  equat ion,  so  fa r  used t o  describe 

the  turbulen t  incompressible mixing, t he  boundary conditions cannot be 

It i s  w e l l  known, 

. 
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s a t i s f i e d  asymptotically s ince  a uniform inv i sc id  flow is  n3t a so lu t ion  

of the  d i f f e r e n t i a l  equation i tself .  

The u s e f u l n e s s  of t h e  solut ion 0: the  subjec t  Blasius e q u t i m  i s  

not  l imited t o  these  cases only. 

is t o  be found i n  problems of mixing of shear flows. 

detailed i n  forthcoming repoyts, a so lu t ion  for thzse  problems c a  be 

achieved by l inea r i z ing  with respect t o  t h e  v o r t i c i t i e s  of t h e  two in t e r -  

ac t ing  streams. It apparently follows t h a t  t he  zero-order solut ion (corres- 

nondine t o  zero v o r t i c i t y  i n  the inv i sc id  streams) w i l l  be described 5y 

t h e  Blasius equation rchereas the coe f f i c i en t s  of the  equation f o r  t h e  f i r s t  

o rder  so lu t ion  w i l l  be functions of t h e  Blasius function i tself .  

and accurate so lu t ion  of this problen, as needed i n  t h e  study of the  

s tabi l i ty  of t h i s  tme of flow, makes once again des i r ab le  t h e  access- 

i b i l i t y  of tabulated values of t?-ie per t inent  Rlasius function. 

One mom? apnlication of t h e  results 

As it w i l l  be 

Rapid 

I n  t h e  present repor t  a b r i e f  der iva t ion  of the  Blasius equation 

wi th  three-point boundary conditions &~ll be given for t5? cas2 of : . ~ - : i c ~ . r  

compressible mixing. Its solut ion i s  subsequently presented and dismss3.2. 

I n  the  course of the  mathematical treatment t h s r e  of ten  apipared suczesslv-- 

i n t e g r a l s  of t h e  comFlementary eri-or function (symbolically indicated by 

i erfcy)) and t h e  successive in t eg ra l s  of t he  square of t h e  funct ions 

i erfc 7 . The values of i erfc7.1 have been tabulated by Xaye , for 

pos i t i ve  values of t h e  argument, up t o  n = 11. 

comnute i e r f c ( - q )  are developed in Appendix A. 

n 

n n 6 

The fozculae nece.zcary ts 

n NE?W and useflrl recclr:cnce 
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formulae permitt ing the  evaluat ion of t h e  successive i n t e g r a l s  of t h e  

functions i'lerfc q are derived i n  Appendix B. 

This work is part  of a program of study on mixing phenomena ca r r i ed  

out a t  the Polytechnic I n s t i t u t e  of  Brooklyn under t h e  supervision of 

Professor Antonio Ferri .  

The research was sponsored by and conducted with the  f i n a n c i a l  

ass i s tance  of t h e  National Advisory Committee f o r  Aeronautics. 

Derivation of t h e  Blasius Equation 

A derivat ion of the Blasius equation from t h e  bas ic  equations describ- 

ing the  compressible laminar mixing of two uniform streams i s  given i n  t h i s  

sect ion.  

The streams are assumed i n f i n i t e  and t h e  s impl i f ica t ions  P r  = 1; 

c = const. and (pp)y = 0 are accepted. P 
Under these hypotheses the  bas ic  equations,  t o  t h e  usual  boundary layer 

approximation, read: 

p = p R T  

c1 = P s C -  T 

TS 



The funct ion-S is  defined by 

and the assumed l a w  of variat ion of t he  v i scos i ty  with absolute 

temperature i s  the  w e l l  known Chapman formula (see Ref .  7). 

w a s  suggested by t h i s  author t h e  constant C can be determined i n  

such a w a y  t h a t  the more exact Sutherland l a w  can be s a t i s f i e d  i n  

As it 

t h e  region of low energy, 

"he boundary conditions t o  be applied t o  the system of Eqs. (1) 

are : 

u = u  
1 

lim 
Y+ 00 

l im u = u  
2 Y-+- 

i 

lim s = o  
Y*+= (3) 

y+- 00 
S = S2 = (H /H )-I 2 1  lim 

These equations express t h e  smooth joining of t h e  d iss ipa t ive  

region with the  two invisc id  streams. The t h i r d  boundary condition 

necessary f o r  the  uniqueness of t h e  solut ion will be given later,  

The Stewartson transformation8 i s  f irst  applied i n  a s l i g h t l y  

modified f o m  which takes i n t o  account the assumed l a w  of var ia t ion  

o f  the  Viscosity with the absolute temperature. The Stewartson 

variables 1. and are defined, i n  t h i s  p a r t i c u l a r  case, by the  

identit ies:  



8. 

With these new variables  the momentum and energy equations become, 

respect ively (see ~ef. 9 ,  f o r  instance):  

wherein the  stream f'unctfon \Ir i s  defined b y :  

The boundary condition3 ( 3 )  i n  t u r n  read: 

l i m  $ = u l i m  S = 0 
q+ 4.00 

? ? 1  q+ + 00 

2 Lfm $ = u  
r ) + - o o  q 

To reduce the  system of Eqs. (5) witn the boundary conditions ( 7 )  

t o  a system of ordinary d i f f e r e n t i a l  equat ions,a  further change of" 

dependent and independent variables 1 c perfomed and the  exis tence 

of similar solut ions for t h e  subjec t  problem i s  postulated.  

. 
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The new var iab les  a r e  defined by: 

10 
After the due transformations are performed, ms. (5) become : 

f , r , +  2ff" = 0 

S" + 2fS' = 0 (9) 

where primes i nd ica t e  d i f f e ren t i a t ion  w i t h  respect  t o  the var iab le  t o  

The boundary conditions are: 

l i m f '  = 1  l i m S = O  
t - "  E+-+ 00 

t +- 00 t-+- a, s2 
l i m  f '  = 1 - A  l i R i  s = 

where 

ul 

10. The energy equation admits of the simple so lu t ion  . 

The momentum equation appears i n  the form of the  well known Blasius 

equation 
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A t  t h i s  point  the  necess i ty  of imposing a t h i r d  boundary condition 

The arbitrari- f o r  t h e  momentum equation cannot be ignored any longer. 

ness connected w i t h  it is well known. It descends from t h e  f a c t  t h a t  

the  y-component of t he  ve loc i ty  is not known a p r i o r i  anywhere i n  the  

f l o w  region nor can it be reasonably an t ic ipa ted  on any physical back- 

ground. 

ness corresponds t o  the  a rb i t r a r ines s  i n  t h e  wake or ien ta t ion  only. 

For t h e  incompressible case it has been shown t h a t  t h i s  a r b i t r a r i -  

The t h i r d  boundary condition herein imposed reads: 

f ( 0 )  = 0 .  

1 It w i l l  be noted t h a t  Ggrtler solved the  same bas ic  equation with a 

t h i r d  boundary condition s t i p u l a t i n g  t h a t  ff(0) = 0. 

there  seem t o  be some mistakes in i t s  o r i g i n a l  so lu t ion ,  i n  Appendix D 

t h e  so lu t ion  with the Grtler boundary condition will be summarily re- 

derived and subsequently expressed i n  terms of t h e  values tabulated i n  

t h i s  repor t ,  

Since, however, 

Solution of t h e  Blasius mua t ion  

The equation t o  be solved is:  

f " '  + 2ff" = 0 

subjec t  t o  t h e  three -point  boundary conditions : 

l i m  f 1  = 1 l i m  f '  = 1 - A  f ( 0 )  = 0 
[++ 00 [-- m--- 
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L 

It is  readi ly  seen, both f m ~  a mathenztical and a physical 9oir.t of 

portional t c  the veloci ty ,  differs frons t i e  value 1 uhich  it t;s:i13s or; f o r  

of A is sought. 

Let then: 

f =  c h i f  
i i 

Subs t i tu t ing  3q. (13) in to  %. (11) and emuping terrr,s in  the  l i k e  FowwE 

of A one obtriins t h e  following system of ec;uations: 

1 ' '  + 2f f' = 0 
*O 0 0  

'lim f ' = O  
1 

c - t +  00 
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f j  = o (iL 2); f (0) = 0 (i L 0) l i m  
i i 5 > t o o  

as t h e  boundary conditions t o  be s a t i s f i e d  by t he  system of Eqs, (13). 

A s  it w a s  previously said, the  zero approximation corresponds t o  

zero mixing and t h e  r e l a t i v e  equation with t h e  pe r t inen t  boundary con- 

d i t i o n s  i s  s a t i s f i e d  by fo = 

(13) i s  rewrit ten as: 

Accordingly, t h e  system of equations 

where t he  R ( 

p a r t i c u l a r ,  f o r  instance: 

) a r e  funct ions a t  most, of t he  ( i -1 ) th  solut ion.  I n  
i 

and, more gene r a l l y  : 
i-1 

h=o h+l i-h 1 
R = - 2  c f f "  /fit i 

Equation (l5a) with the  boundary condition (14a) admits of t h e  so lu t ion :  

5 t 



where t h e  general  so lu t ion  of Sq. (15b) i s  

where t h e  three  arbitrary constants C , C and C have t o  be 

determined from the  boundayy condit,ions (14b). From t he  t h i r d  one 
l,i 2 . i  3 . i  

it i s  infer red  t h a t  C 

ing t h e  boundary conditions (14) y i e l C :  

= 0. Dif fe ren t i a t ing  %. (18) once and apply- 
3 , i  

and t h e  required so lu t ion  assumes t h e  simple fom:  
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Successive approximations t o  the  so lu t ion  f can thus be r ead i ly  deter-  

mined t o  any order. 

The t a sk  i s  even more s impl i f ied  i f  Eq. (21) i s  expressed i n  terms 

of t he  complementary e r r o r  function and of r e l a t ed  functions. In 

Appendix C t he  f i r s t  t h r e e  approximations are expressed i n  terms of:  

1) The repeated in t eg ra l s  of t he  e r r o r  funct ion,  defined as 

00 
r 

and 

2)  The repeated i n t e g r a l s  of t he  square of these funct ions,  

defined as 

m n  J jm-l n 
j i e r f c T  = i e r f c  t d t  

c 
with 

n 6 

The functions in erfc(-T) 

The funct ions i e r f c  q 

f o r  pos i t i ve  values of t h e  var iab le  T . 
have been tabulated up  t o  n = 11 by Kaye 

are shown i n  Appendix A. The funct ions jmin e r f c  can be likewise 

n 
expressed i n  terms of t h e  functions i e r f c  q. T h i s  i s  d e t a i l e d  i n  

i n e r f c q =  J in-' e r f c  t d t  
T 



Appendix B wherein a reeurrence formula f o r  these functions i s  a lso  

given. I 

The f i rs t  three  a p p r o a a t i o n s  of t h e  function f ([) have been 

computed t o  six s ign i f i can t  f igures ,  using t h e  previously mentioned 

relat ions.  

four s ign i f icant  f igures.  

f,([) and f11( [ ) ( i= l ,2)  w i t h  t h e  same number of s ign i f i can t  figures. 

A p l o t  of these functions i s  given i n  Figs. 1 through 6 .  To have an 

Values of f1( f , ) ( i= l ,2 ,3)  are tabulated i n  Table I with 
i 

Tables I1 and I11 give the  functions 

1 i 

idea of the convergency of the series given by Eq. (13) the following 

functions 

1 2 

f J 3 )  = 1 +Af t  +Pf '  +A3f' 
1 2 3 

yielding the f irst ,  second and t h i r d  approximations t o  the  ve loc i ty  

p ro f i l e  have been computed f o r  A = 0.1; 0.2; 0.3;  0.4; 0.6; 0.8. 

The r e s u l t s  are p lo t ted  i n  Figs. 7 and 8. It appears t h a t  the first 

two approximations are  already su f f i c i en t ly  accurate f o r  most prac t i -  

c a l  purposes, t he  t h i r d  one being needed only f o r  values of X 

than 0.5. 

poorer i n  t h e  l o w  ve loc i ty  regions. 

g rea te r  

As it was t o  be expected the involved approximations are 

. 
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Conclusions - 
The Slasius equation subject t o  thre:-roint b3undx-y c3nditions is 

shown t o  su i tab ly  describe all t h e  cases of mixing of two uni fom s t r e a m ,  

where turbulent  comliressible mixing i s  the  m l y  exception. The solut ion 

of t h i s  equation i s  ppesented by way of a series i n  tei-ms of the  r a t i o  

A =  where the  u I s  are t ho  inviscid streaTs1 ve loc i t i e s .  
117 - u2 

i 
1 U 

The t h i r d  houndary co r l i i t im  i s  awl id t o  th :  B l x i u s  funct i  o!i i t se l f  

r a t h e r  than t o  i t s  5 r z t  der iva t ive .  

The first three  t o m s  of the  seri.?s are given e x p l i c i t l y  i n  t e r m  
n 

of the r e p a t e d  i n t e g r d s  of the  cam-lementary e r r o r  funztion (i e r f c  7 )  

and of the reneatcd in t ep ra l s  of t h e  square of t he  successive i n t e g r a l s  

of the  complementar-y e r r o r  funztion ( jmin er fc  T) .  F o m d a e  r e l a t ing  

these functions t o  avai lable  tabulated values a-e devv lopsd  . 
The f i r s t  t h E e  anproximatims t o  the  ve loc i ty  p r o f i l e  are corn :uteb 

up t o  values of A of aboQt 3.5. 

Per t inent  tabulated valuas are ~ ? ~ r t e c l  i*:ith foilr s i g n i f i c  .,!it 

f igures .  
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APPENDIX A 

The Error Function and Its Repeated In t eg ra l s  . 

The f a c t  t h a t  t h e  so lu t ion  of s eve ra l  problems leading t o  ex- 

tended heat conduction type equations can be expressed very simply 

i n  terms of funct ions formed by repeated in t eg ra t ion  of t he  e r r o r  

funct ion was f i rs t  recognized by Hartree. 

some i n t e r e s t i n g  proper t ies  and appl ica t ions  of t h e  repeated i n t e g r a l s  

In  h i s  papern he shows 

.. 

of the e r r o r  function, 

J, Kaye i n  dealing with heat t r a n s f e r  and mass t r a n s f e r  problems when 

the boundary conditions are time dependent 

t h e  necess i ty  of tabula t ing  the  repeated i n t e g r a l s  of t he  e r r o r  funct ion,  

which he did 

More recent ly ,  t h e  question was taken up by 

12 . From his work stemmed 

6 up t o  the eleventh repeated in t eg ra l .  The a v a i l a b i l i t y  * 

of these tables proves very useful  i n  t h e  subject  problem too,  reducing 

by a considerable amount t he  necessary computations t o  determine the 

successive approximation t o  the Blasius equation. However, s ince  t h e  

present  range of t h e  independent va r i ab le  i s  + 00, - 00, it was 

found necessary t o  extend the  d e f i n i t i o n  of these repeated i n t e g r a l s  t o  

negative values of t h e  independent var iable .  

these  formulae have never been presented. 

To the au thor ' s  knowledge, 

It was consequently felt  

proper t o  give them, together  with other  formulae usefu l  in transforming 

Eqs, (18) and (a), in t e r m s  of the  repeated i n t e g r a l s  of t he  e r r o r  

funct ion 
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The e r r o r  function i s  defined by: 

and t h e  complement of t h e  e r r o r  funct ion,  e r f c  7 by: 

a 
e r fc ' q  = 1 - er fq  = J e-t d t  

d ? y  
' I  t h  

The n repeated i n t e g r a l  of e r f c  q i s  symbolically defined as: 

i n 
f e r f c q  = in-l 

e r f c  t d t  ( A 3  1 

with 

0 
i e r f c q  = e r f c  q (Ab) 

The functions given by Eq. ( A 3 )  are tabula ted ,  up t o  n = l l ,  i n  R e f .  6 f o r  

pos i t i ve  values of t h e  va r i ab le  r\, 
n 

It i s  of i n t e r e s t  t o  extend t h e  d e f i n i t i o n  of i e r f c  rl t o  

negative values of q as follows: 

-T 
and t o  see whether it i s  possible  t o  express them as funct ion of t h e  

known tabulated values of in e r f c  q o  To t h i s  purpose it i s  r eca l l ed  



t h a t  e r f c  q is  an odd function and t h a t  consequently: 

(A6) 0 0 
i erfc ( -q)  = 2 - i e r f c q  

Furthermore, consis tent  with the  notation given i n  Eq. ( A 3 ) ,  the  f i rs t  

der ivat ive of t he  e r r o r  function i s  defined by: 

It is ,  apparently, an even function, so  t h a t :  

By repeated appl icat ion of t h e  follow-ng recurrence f 

f o r  n 1 1: 

n n-2 n-1 
2n i erfc T= i erfc  - 2 T i  e r f c q  

it i s  then easily ve r i f i ed  t h a t  the following general i d e n t i t y  holds: 

L h=o 

I n  deriving Eq. ( A l O )  it has been taken i n t o  account t h a t  Bq. (A9)  

yields, f o r q  = 0: 
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or  

n n-2 
2n i er fc (o )  = i erfc(o)  

n 1 i e r fc (o )  = 
2 n (2 1 n)! 

Eq. (AI.0) gives the  required r e l a t i o n  between the repeated i n t e g r a l s  

of t h e  e r r o r  funct ion f o r  negative and pos i t ive  values of the  independ- 

e n t  var iables .  Thus, f o r  instance,  t h e  f i r s t  three  i n t e g r a l s  i n  the  

negative range of r) are simply expressed by: 

i erfc(-r)  ) = 2 q  + i e r f c q  

i erfc(-r) ) = -i2 erfc r) + q2 + 212 e r f c (  0 )  

i 3 e r f c ( - ~  

(All) 
2 

= i3 e r f c  q + 2 q i a e r f c ( o )  + ~ ~ / 3  

Apparently these repeated in t eg ra l s  will not  con-:: ' '  ~ as 4- 00 

T h e i r  asymptotic behavior, f o r  i-q 1 l a rge ,  i s :  

e-qa [l + (-l)n-hl n n+l 2 - 
2 + 2  c i er fc( - r ) ) . -  (-1) 

&-- (2q)"+l h=o 

APPENDIX B 

n Repeated In t eg ra l s  of t h e  Functions ( i  e r f c m ) a  

I n  many problems described by extended hea t  conduction type equa- 

t i ons ,  there  of ten  occur functions such as 

- - - r ( i n e r f c r ) ) "  dq d q d q  ---% JfW.r" 4 p" L 1 2 3  m 
Tl q2  773 

both i n  the  e x p l i c i t  ana ly t i c  expression of the so lu t ion  and i n  the 

evaluat ion o f  i n t eg ra l s  of t he  type: 
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I THE BLASIUS EQUATION WITH THREEPOINT BOUNDARY CONDITIONS* 
BY 

L. G. NAPOLITGVO 

Polytechnic Institufe of Brooklyn 

Abstract. The Blasius equation subject to three-point boundary conditions, de- 
scribing the interaction between two parallel streams, is solved by way of a series in 
terms of ascending powers of the ratio X = (u, - u,)/u, , where the u,'s are the outer 
streams' velocities. 

The first three terms of the series are analytically expressed in terms of the repeated 
integrals of the complementary error function (2" erfc q )  and of the repeated integrals 
of the square of the successive integrals of the complementary error function (j"a" erfc q ) .  
These functions often appear in problems leading to extended heat-conduction type of 
equations. h recurrence formula for j-a" erfc q is established and formulae relating the 
functions 2" erfc (-7) and j"'j" erfc (&v)  to available tabulated d u e s  of the functions 
2" erfc ( q )  are derived. 

The first three approximations to the Blasius function and to its first two derivatives 
are also presented in tabulated form with four significant figures. Test on the convergence 
of the series has been made by comparison with some exact solutions obtained by high 
speed computing machine. The comparison, extended to the physically essential quan- 
tities, shows that: 

(1) The Blasius function itself is slightly less accurate than its second and first 
derivatives. 

(2)  Two terms of t.he series for A up to 0.5 and three terms for X up to 0.7 yield 
extremely accurate results. The errors in the first two derivatives of the Blasius 
functions are always contained within less than one per cent. 

1. Introduction. The solution of the Blasius equation with three-point boundary 
conditions has per se a considerable academic interest. The availability of closed form 
solution has, however, become a practical necessity in view of the recent findings which 
have shown the essential and unique role played by this equation in isobaric mixing 
flows. It can indeed be said that all the types of plane two-dimensional interactions 
between two streams are governed by the Blasius equation with three-point boundary 
conditions. 

The reducibility of the basic Prandtl equations to the Blasius equation with pertinent 

mixing of uniform streams and, subsequently [Z], for the turbulent case also. The present 
author showed [3] that the same happens for the compressible laminar case. A recent 

empirical correlation existing between turbulent and laminar compressible mixing. 
It was found that, under the assumption of a unitary turbulent Prandtl number, the 
velocity profiles are considerably independent of Mach numbers and density ratio and 

# boundary conditions was first shown by Gortler [1]** for the laminar incompressible 

investigation by the present author [4] has also brought forth some evidence of an 
0 

*Received December 19, 1957. This work was sponsored in part by the NACA under Contract 
NAw 6480. Some of the results have appeared in Ref. [9] which was issued in a limited number of copiea 
not for circulation. 

**Numbem in brackets refer to the bibliography at the end of the paper. 
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can therefore be deduced from the solution of the Blasius equation. This statement has 
an even larger implication insofar as it applies whenever the density ratio can be given 

function is widened to include a large variety of interactions between streams of different 
gases [SI. Solutions of the Blasius equation are furthermore needed in problems of laminar 
and turbulent mixing of non-uniform constant vorticity streams. These prohlems are 
solved by means of a series solution in terms of the "vorticity numbers": the zeroth 
ordcr terms is the Blasius function and the coefficient of the equations for the higher 
order terms are all functions of the Blasius function arid its derivatives [e]. 

The present paper is mainly concrmed with the solution of the Blasius equation and 
not with its derivation for which referenw is made to the pertinent literature. The solu- 
tion is obtained as a series in tcwns of the parameter X = (u ,  - u,)/u, . The first three 
terms (up to ha) are given in explicit closed form and in tabulated forms. Owing to the 
complicated nature of the terms of the series, its convergence could not be formally 
established. The results of the present method are, however, compared with some exact 
solutions obtaincd by high specd computing machine calculations. 

In the course of the matliematical treatment there often appeared successive repeated 
integrals of the complementary error function (symbolically indicated by 2" erfc r ] )  

and successive repwted integrals of thc square of the functions 2" erfc 7. As this feature 
is common to a 1:irgo variety of p1iysic:d problcms which can be reduced to extended heat 
conduction type of equations, a summnry study of thosc functions is presented in Appen- 
dixes A and 1%. l{'ormul:ie ncccssnry to compute the values of in erfc ( - 9 )  in terms of 
the already tabulated vnlues (up to 71 = 11) of 2" erfc 7 :Ire developed. A recurrence 
formula is established for the functions j"z" erfc r]  defined as the successive integrals 
of the fiinctions (2" erfc 7)'. b'inally relationships giving the functions j"i' crfc r]  in 
ternis of the functions I" crfc 7 are derived which :ifford a rapid evaluation of the func- 
tions themselves. 

This work is part of a program of investigation on mixing phenomena carried out at 
the Polytechnic Institute of Brooklyn under the supervision of Prof. Antonio Ferri. 

2. Solution of the Blasius equation. The eqiiation to tw solvcd is 

B p:mbolic dependence on the velocity ratio. Thus the field of application of the Blasius 9 

f f f f  + 2ff" = 0 ( 1 )  

and it  is subject to the following three-point boundary conditions 

lim f '  = 1 lim f '  = 1 - f(o) = 0 0 5 5 1. (2) 
i - + m  p - c a  

Quantities related to the mixing of two streams are expressible in terms of the function 
f ( { )  and its derivatives as follows 

J ,  = 2(Wl 4 1 / 2 f ( r ) ,  

(3) 

1 /2 

2, = k) [({ - k)f' - f ] .  
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In these equations z and y are space coordinates whose origin is taken to be a t  the 
point where the interaction begins, u and v are the corresponding velocity components, 
1/. is the stream function defined by 11 = $z ; v = -#, and Y is the kinematic viscosity coeffi- 
cient. The quantity k is an arbitrary constant whose presence follows from an interesting 
property of the Prandtl boundary layer equations. These equations are invariant under 
the transformation 

Y1 = Y + 4 4 1  

Asymptotic boundary conditions on the x-component of the velocity remain also 
unchanged while boundary conditions on the y-component are changed. The mathe- 
matical implication of this fact lies in the freedom of choosing arbitrarily the third 
boundary condition for thc Blasius equation. The physical implication is the resulting 
indeterminacy of the wake orientation insofar as the transformation back into the physical 
plane cannot be performed unless k is known. Additional physical considerations, such 
as the one suggested by von K A r d n  that a free make be acted upon by a zero resultant 
force in the ydirection, will uniquely determine this constant IC and thus will fix the 
orientation of the wake. The solution herein presented relates to a wake whose streamline 
through the origin satisfies the equation y = -2k(~x/u,)~’~. 

The following series solution of Eq. (1) in ascending powers of X is sought 

Equation (5) is substituted into Eq. (I) and the coefficient,s of the successive powers 
of X are set equal to zero. The zeroth order approKimation must satisfy the following 
equation 

$” + 2f&’ = 0 
with 

lim fi = 1,  

f40) = 0. 

r + r m  (7) 

The pertinent solution is lo = { and it corresponds, physically, to zero mixing. The 
equation for the first approximation is, by taking the zeroth order solution into account 

(8) f:” + 2{fi‘ = 0 

with 
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The solution of Eq. (8) is 

Finally, the ith approximation (i >_ 2) must satisfy the equation 

f:" + 2 X '  = f:'R,(T), (11) 
1 

where the R,([ )  are functions, a t  most, of the (i - 1)th solution and are give11 by 
, - I  

I W  = - 2  f h + l f : l h l f : ' .  ( 1  2)  
h = O  

Equ:ition ( I  1) is subject to the boundary conditions 

and :diiiit,s the solution 

with 

Sucwwive approxiii1:Ltions to the solution f can thus be readily dcterniined to any order. 
The task is considerably simplified if Eq. (14) is expressed in terms of the eomplc- 

mentary error function and of related functions. In this problem, indeed, as well as in 
several other problems lendiiig to estciitlcd heat-conduction type of equation, the solution 
can h evprtssctl rat her simply in terms of the following functions 

in erfc 7 = 1- 1; . . .I_ (erfc 7") dq2 - dv,, , 

J v .  

~ ~ , , ( 7 )  = Im (in' erfc t )  .(i" crfc t )  d t .  
'1 

Of these functions only the first ones, usually referred to as repeated integrals of the 
complementary error function, have been studied. Hartree [TI has shown some of their 
properties and applications and, more recently, I h y e  [8] has tabulated them, up to the 
eleventh repcntcd integral, for positive value of the argument. 

The functiotis i" erfc ( - 7 )  :ire considered in Appendix X wherein their expressions 
in tcrrns of the functions i" crfc 7 arid thcir nsyniptotic behavior are presented. A sum- 
mary study of thc functions j"'z" erfc 7 is given in Appendix R. Therein the existence of 
a recurrence formula is proved and expressions relating the functions jmzm erfc (+v) 
arid T,.,(fq) to the repeated integrals of the error function are given. 

I 

I 

If simplified notation such as 

i" erfc I) = 271, 



19591 BLASIUS EQUATIOX WITH THREE-POIST BOUNDARY COSDITIONS 401 

are adopted, the first approximations to the function f can be given simple analytical 
expressions as follows: 

First approximation- 

f I  = *[i - (*)-1’2], 

1;’ = (*)-I/* p - I ’ *  

f{ = -+io = - 3  erfc <, 

Second approximation- 

io i-* 
f; = - - n - 4 4(?rj”- + $(;)’> 

TABLE 1 

Blasius equation with three-point buundwy eonditions-Values of fi 

r f l ( t )  
0.00 .oooo 
0.01 -.ma 
0.02 - .0099 
0.04 - .0195 
0.06 -.om 
0.08 - .0382 
0.10 - .M72 
0.12 - .0559 
0.14 - .OM5 
0.16 - .0728 
0.18 -.om 
0.20 - ,0888 
0.30 - .1m 
0.40 - .l560 
0.50 - .1823 
0.60 - .2041 
0.70 - .2220 
0.80 - .2365 
0.90 - .2480 
1 .00 - . 2 5 i O  
1.20 - ,2691 
1.40 - .2758 
1.60 - ,2792 
1.80 - .2809 
2.00 - .2816 
2.20 - .2819 
2.40 - .28% 
2.60 - ,2821 
2.80 - .2821 
3.00 - .2821 

fd -i) h e )  
.oooo .oooo 
. 0050 .oO04 
,0101 .m 
. m 4  .0017 
.03 10 .0025 
.0418 .0032 
.0528 .0038 
0640 ,0044 

,0755 .00w 
.0872 .0054 
.w91 .0058 
.1112 .0063 
.1750 . 0078 
,2440 .0075 
,3177 ,0069 
,3959 ,0056 
.4779 .0037 
.5635 .0016 
.65m - .oO05 
. i 430  - .0024 
.Y309 - ,0060 

1.1243 - .0085 
1.3208 - .0102 
1.5191 - .0112 
1.5184 - .0117 
1.9181 - .0119 
2.1189 - ,0120 
2.3179 - ,0121 
2.5179 - ,0121 
2.7179 - .0121 

f 4  -t) 
.oooo 

- .oO06 
- .ooo9 
- .0032 
- .0034 
- ,0041 
- ,0052 
- . m 5  
- .m77 
- ,0090 
- .0104 
- .0118 
- .0196 
- .0295 
- .0381 
- .0503 
- .0610 
- .0705 
- .07% 
- ,0867 
- ,1017 
- ,1126 
- .1199 
- ,1238 
- .1268 
- . 1 m  
- .1286 
- ,1288 
- .1289 
- .1289 

fa({) f a (  -0 
.oooo .m 
.oO02 - .o002 
.0004 - .o004 
.o009 - .o009 
,0013 - ,0013 
,0017 - .0018 
.0021 - .0023 
.@I25 - .0028 
.0029 - ,0033 
.0033 - .0038 
,0037 - .0043 
,0041 - 0048 
.0058 - .0075 
. 0074 - .0104 
.ma5 - .0136 
.0098 - .0171 
,0107 -.om 
. 01 13 - .0250 
.0018 - .0295 
,0120 - ,0342 
.0122 - .0437 
.0121 - .0529 
.0119 - .0609 
.0117 - .0674 
,0116 - .07m 
.0115 - .0750 
.0115 - ,0765 
.0115 - ,0771 
.0115 - .0773 
,0115 - ,0773 
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1 

-1 1 i-’i2 z + ---- 
4 4(7r) ‘ I 2  4(2r)’I2 + - [ 2 ( ? r ) - ’ / 2 i 2  - ( 4 2 1  - 

* 

, 

i 
b 

i I:( r )  
0.0 - .5000 

.01 - ,4943 
02 - .4887 

.0‘1 - ,4774 

.06 - .4662 

.08 - ,4550 

.10 - .44:18 

. I2 - ,432ti 

.14 - ,4215 

. 1 G  - .4105 

.18 - ,3995 

.20 - .388(i 

.30 - .3357 

. 4 0  - .2858 

.50 - .2397 

. 60 - .1981 

.50 - .  1611 

.80 - ,1289 

. !I0 - .  1015 
1 .00 - ,0786 

.20 - ,0448 

.40 - ,0238 

.(io - ,0118 

.80 - ,0054 
2.00 - .0023 
2 .20 - . OOO!) 
2.40 - .0003 
2.60 - .0001 
2.80 . 0000 
3.00 . 0000 

I:( - f )  
- .5000 
- ,5056 
- ,5113 
- ,5225 
- .SA38 
- ,5450 
- ,5562 
- ,5674 
- .5785 
- .5895 
- ,6005 
- ,6113 
- .66q3 
- , 7142 
- ,7602 
- ,8019 
- . 838!) 
- ,8710 
- .898-1 
- ,9213 
- ,9551 
- .!E61 

-0. ‘3882 
-0. 9!145 
-0.!)977 
-0 .!)991 
-0. !)!)!)6 
-0.!)999 
- 1 . 0000 
- I . 0000 

I:( 0 
,0454 
04-10 

,0426 
.03!l8 
,0370 
.0342 
.0314 
,0287 
.0260 
,023 1 
,0218 
,0183 
,0080 

- . 0os3 
- ,0109 
- .OIG3 
- ,0195 
- ,0210 
- .0209 
- .0197 
- ,0154 
- ,0105 
- ,0004 
- ,0035 
- ,0017 
- .WO8 
- .000:3 
- . 000 1 

.0000 
0000 

I% -i-) 
.0454 
.04(i8 
,0482 
.0510 
.OX38 
.05titi 
,0594 
,062 1 
,0648 
,0654 
,0700 
,0725 
,0839 
,0929 
. O!)!lO 
.lo18 
,1014 
. 00 80 
,0920 
.084 1 
.0648 
,0451 
,0285 
,0123 
,0086 
,004 1 
,0018 
,0007 
,0003 
,0001 

I:( r )  
,0222 
,0220 
,0218 
,0215 
,021 1 
,0208 
,0204 
,0201 
.01W 
,0l!l3 
.01!I0 
,0186 
.0lM 
.Ol46  
. 0 123 
.0008 
.0078 
.0052 
.00:%4 
,0018 
.0000 

- .0010 
- ,0012 
- ,0008 
- .0004 
- .OW2 
-.000L 
- ,000 1 

. 0000 

. 0000 

i:( - I )  
.0222 
,0224 
.0225 
,0229 
.0233 
,023 ti 
,0240 
,0244 
,0247 
.025 1 
,0255 
.025!) 
0280 

.0304 

.0332 
,036-1 
.0399 
,0433 
.0450 4 

.0475 
,0476 
. 0 4 3  
.0:w9 
,0278 
. 00 10 
. 0 107 
.0045 
,0018 
,0002 
. 0000 
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TABLE 3 
U B h i u s  equation with three-puint boundary conditions-Values of f f f  

I 
# .OO 

.01 

.02 

.04 

.06 

.08 

.10 

.12 

.14 

.16 

.18 

.20 

.30 

.a 

.50 

.60 

.70 

.80 

.90 
1 .oo 
1.20 
1.40 
1.60 
1.80 
2 .oo 
2.20 
2.40 
2.60 
2.80 
3.00 

j:’( I )  
.5642 
.5641 
.5640 
,5633 
.5622 
,5606 
.5586 
.5561 
.5532 
.5499 
.5462 
.5421 
.5156 
.4808 
,4394 
.3936 
.3456 
.2975 
.2510 
.2075 
.I337 
.0795 
,0436 
.on1 
,0103 
,0045 
,0018 
.OOO6 
.o002 
.o001 

iY( -i) 
.5642 
.5641 
. 5 w  
,5633 
,5622 
.5606 
.5586 
.5%1 
.5532 
.5499 
,5462 
,5421 
,5156 
,4808 
.4395 
.3936 
.3456 
.2955 
.2510 
.2075 

~ 1337 
.0795 
,0436 
.022 1 
. 0 103 
,0045 
.0018 
.o006 
.o002 
.o001 

f Y ( t )  
- .1410 
- ,1410 
- .1m 
- .1#4 
- ,1395 
- .1384 
- ,1370 
- .1352 
- ,1332 
-.1m 
- 1283 
- ,1255 
- ,1083 
- 0874 
- .0650 
- ,0430 
- .0230 
- .0061 

. m i 0  
,0165 
.0246 
,0233 
,0176 
.0114 
,0065 
.0033 - ,0015 
.OOO6 
.0002 
.OOol 

i3 -t) 
- ,1410 
- ,1410 
- ,1409 
- ,1404 
- ,1395 
- ,1383 
- ,1367 
- .1348 
- ,1326 
- ,1300 
- .1271 
- .1239 
- .lo31 
- ,0760 
- .0448 
- .0121 

.0195 

.0478 

.0708 

.OS75 

. lol l  
,0927 
.0722 
,049 1 
,0297 
.0160 
. 0078 
.0035 
.0014 
.o005 

!:’ti) 
- .0176 
- .0176 

- ,0177 
- .0178 
- .01i9 
- ,0180 
- ,0180 
- .0182 
- .0186 
- .0188 
- .01‘M 
- ,0201 
- .0216 
- .0235 
- .0265 
- ,0250 
- .0218 
- ,0171 

,0118 
.mi2  
.0031 
,0015 
.0028 
.0018 
.000i 
o004 

.o002 

.o001 

.o001 

- ,0177 

K( - r )  
- ,0176 
- .01i6 
- .0177 
- .01 i i  
- .0178 
- .0179 
- 0180 
- .0182 
- ,0184 
- .0188 
- ,0193 
- ,0200 
- ,0225 
- ,0255 
- .o300 
- .03f5 
- ,0350 
- .0320 
- .0205 
- .0100 

,0100 
.0260 
-043.5 
,0480 
0440 

.03,iO 
,0220 
.0105 
.0050 
.0008 

The first three approximations to the functions f@), f’({) and f”({) have been com- 
puted to six significant figures. Values of fi({), f : ( { )  and f:f({)7 (i = 1,2,3) are tabulated 
in Tables 1 and 3 with four significant figures. 

3. Accuracy of the solution. The convergence of the series given by Eq. (5) could 

indications about the rapidity of the convergence, however, are derived by comparing 
the results with those of some exact solutions obtained with the D12 Differential Analyzer 
presently in operation at  the Centro di Calcolo Elettronico of the University of Naples.’ 

The following indicative values for X were considered: X = 0.2678; X = 0.4796; 
X = 0.5541; X = 0.6915. Comparison was extended to  the following physically meaningful 
quantities: 

i) f’(O), (proportional to the component u of the velocity along the &axis); 

v not be formally established, owing to the complexity of the relative terms. Practical 
\ 

1 -  

’These calculations are part of a larger program of high speed machine solution of t.urbulent mixing 
flows sponsored by the United States Air Force through the Air Force Office of Scientific Research, 
Air Research and Development Command, under Contract AF 18(600)-693, Project No. 17500. The ,  
cooperation of Prof. Giorgio Savastano, Associate Director of the C. C. E., is gratefully acknowledged. 
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, ii) f”(O), (proportional to the shear stress along the z-axis); 
iii) limr,,, [{j’ - f], (proportional, for k = 0, to the y-component of the velocity 

a t  the edges of the wake). 

Values obtained from the exact solutions and from the first, second and third approxi- * 
mations to the function f({) are listed in Table 4. 

TABLE 4 

Comparison between exact and approximate solutions 
- - __ 

Exact I Approx. I1 Approx. I11 Approx. 
A = 0.26783 
Y(0) 0.8698 0.8661 0.8693 0.8697 
f’W) 0.1406 0.1511 0.1410 0.1407 
lim Lrf’ - I1 0.0762 0.0755 0.0764 0.0762 

lim [rY - I1 0.0865 0.0755 0.0847 0.0862 
r - m  
h = 0.47961 
Y(0) 0.7739 0.7602 0.7706 0.7730 
Y Y O )  0.2360 0.2706 0.2382 0.2362 
lim kf’ - I1 0.1362 0.1353 0.1381 0.1368 
{ + (0 

lim kf’ - f l  0.1765 0.1353 0,1649 0.1734 
r + m  
h = 0.55412 
Y(0) 0.7421 0.7229 0.7368 0.7406 
(“(0 1 0.2660 0.3126 0.2693 0.2663 
lim kf’ - f l  0.1568 0.1563 0.1600 0.1580 
r + -  
lim kf’ - I1 0.2154 0.1563 0.1959 0.2090 
r+-  
X = 0.69147 
Y(0) 0.6870 0.6543 0.6760 0.6833 
I”(0 1 0.3158 0.3901 0.3227 0.3169 
lim Irf’ - 51 0.1937 0.1951 0.2009 0.1971 
I + -  
lim [rl’ - fl  0.3003 0.1951 0.2567 0.2822 
r -  - 

I + -  

-~ - .- 

The following comments are proper: 

(1) The best agreement is obtained for f”, followed, in order, by f’ and f.  
(2) The accuracy decreases with X and, for a given X, is greater for l large than for 

I -{ I large. 
(3) The y-component of the velocity a t  the lower edge of the wake always exhibits 

the maximum percental error. 
(4) The first two approximations are more than satisfactory up to values of X = 0.5. 

The errors in f’(0) and f”(0) are less than one per cent. 
(5) Three terms of the series are needed for values of X greater than 0.5. With three 

terms the errors are nearly always contained within less than one per cent up 
to X equal to 0.7. The only exception lies again in the value of the y-component 
of the velocity a t  the lower edge of the wake. The approximate value is 6% 
smaller than the exact one. 

;4 

I 
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APPENDIX A 

The error function and its repeated integrals. The error function is defined by 

and the complement of the error function, erfc 'I, by 

The nth repeated integral of erfc q is symbolically defined rn 

i" erfc 7 = lm (T' erfc t )  d t  (n 2 1) 

with 

io erfc q = erfc 7 .  (A41 
The functions given by Eq. (A3) are tabulated, up to n = 11, in Ref. [SI for positive 
values of the variable q. 

It is of interest to extend the definition of 2" erfc r]  to negative values of 7 as follows 

i" erfc ( - q )  = ( T I  erfc t )  dt, L 
and to see whether it is possible to express them as functions of the known tabulated 
values of 2" erfc 'I. 

In  consistence with the notation given in Eq. (A3), the first derivative of the error 
function is defined by 

5.3 

It is, apparently, an even function, so that 

i-' erfc (- r ] )  = i - I  erfc q ,  (An 
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whereas 
io erfc (-7) = 2 - in erfc 7. 

By repeated application of the following recurrence formula [7], valid for n 2 1 

2ni" erfc 7 = erfc 7 - 27i"-' erfc 7 (A9) i 
i t  is then easily verified that the following general identity holds 

In  deriving Eq. (A10) it has been taken into account that Eq. (A9) yields, for 7 = 0 

2ni" erfc (0) = in-' erfc (0) 

or 
1 

Y(+n) ! i" erfc (0) = -* 

Equation (A10) gives the required relation between the repeated integrals of the error 
function for negative and positive values of the independent variables. Thus, for instance, 
the first three integrals in the negative range of 7 are simply expressed by 

i erfc (-7) = 27 + i erfc 7, 

iz erfc (-7) = -i2 erfc 11 + 7' + 2i2 crfc (O), 

i3 erfc (-7) = i3 erfc 9 + 27iz erfc (0) + 7'/3. 

Apparently these repeated integrals will not converge as 7 --+ - 03. Their asymptotic 
behavior, for I -7 I large, is 

(A1 1) 

APPENDIX 13 

Repeated integrals of the functions (in erfc 7)'. Let the successive integrals of the 
functions (2" erfc T ) ~  be symbolically indicated by 

(B 1) 
(jm-'in erfc t )  d t  (nz 2 0) 

(n 2 0) 1 

I 

with 
join erfc 7 

It is desired to express these functions 
function. 

= (in erfc 7)'. (B2) 

in terms of the repeated integrals of the error 

The relationship is immediate for the two particular cases: n = - 1 (m any positive 

Indeed when m = 1 and n = - 1, i t  is by definition 
integers) and m = 1 (n 2 0) .  
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so that [see Eq. (A3)] 

Repeated integrations easily yield the required relat,ion between j"i-' erfc r]  and 
the repeated integrals of erfc 9 as 

-4 corresponding expression, valid for m = 1 and any n 2 0 can be obtained by 
repeated integrations by parts. -4s it  is easy to verifyl the following identity will result 

In deriving Eq. (BG), the following identity 

(B7) 
d -" 
d9 

j-'zn erfc 7 = -- (z erfc 7)' = 22" erfc r].zn-' erfc 7 

which constitutes an obvious extension of the definition (Bl) to the case m = -1, 
has been taken into account. 

In the most general case use must be made of a recurrence formula. This formula 
can be derived by successive and repeated integration by parts of Eq. (Bl). By taking 
Eq. (A9) into consideration one obtains 

-=-I n (2n + m)jmin erfc 7 = $j"-'i" erfc 7 - 73 z erfc r]  - j"i"-' erfc r]  (B8) 

valid for m 2 1 and n 2 0. 
The recurrence formula (B8) together with Eqs. (B5) and (BG) afford a rapid com- 

putation of the functions j"z" erfc r]. Their extensions to negative values of the argument 
are readily accomplished by means of Eq. (A10). 

The first few functions j"z" erfc r ] ,  are explicited and their values a t  9 = 0 are given. 
A simplified notation such as 

a 

I *  
r, is adopted. Thus 

i" erfc r]  z" 

jmin erfc 7 = j"z" 
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2 
1 $‘(O) = (x)-”’[2 - (2)’’2], 4jzi0(0) = 1 - - , 

‘K 

1 1  
x 4  3ji(O) = (x)-1’*[(2)1’z - I ] ,  43i(O) - - - *  

To conclude, the integral 

T,,(?) = f m  im erfc 2-i” erfc t d t  (71 > m) 
* n  

will be evaluated. 
Repeated integrations by parts and consideration of Eg. (BG) yield 

and 

[Vol. XVI, No. 4 , 

when n - m = 2h + 1, and 

when n - m = 2h. 
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( i m  e r f c  t-in erfc t ) d t  

? 

This appendix is  devoted t o  a summary study of these functions 

t o  be referred t o  as t h e  repeated in t eg ra l s  of the functions 

( i n e r f c q  )2. The existence of a recurrence formula w i l l  be proved, 

expressions re la t ing  t o  the subject  functions t o  the known repeated 

in t eg ra l s  of the e r r o r  functions will bo given, and the i n t e g r a l  

given i n  E q .  (Bl) will  be evaluated. 

n L e t  t he  successive in tegra ls  of the functions ( i  e r f c q ) 2  be 

symbolic a l l y  indicated by : 

fm jm-'inerfc t d t  (m 1. 0 ) j i e r f c q =  
7 

= ( i  e r fc  q)? 

(B2) 
m n  

with 
n 

(B3 0. j 1 e r f c  q 

It i s  desired t o  express t h e s e  functions in terms of  t he  repeated 

in t eg ra l s  of the e r r o r  function. This i s  almost immediately done fo r  

the  two pa r t i cu la r  cases: n = -1 and m = 0. 

Indeed when m = 1 and n = -1, it i s  by def in i t ion :  

s o  t h a t  (see Eq- A3) 
- 

j i - l e r f c  7 = &erfc  (d~ ) (B4) 
.J; 

Repeated integrat ions eas i ly  y i e l d  the required r e l a t ion  between 

m -1 j i e r f c  q and t h e  repeated in t eg ra l s  of e r f c  q as: 

rJn 
A corresponding expression, va l iq  f o r m  = 1 and any n > - 0 can 

be obtained by repeated integrat ions by par ts .  A s  it i s  easy t o  ver i fy ,  
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t he  following i d e n t i t y  will r e s u l t :  

I n  t h e  most general case use must be made of a recurrence 

formula. 

in tegra t ion  by pa r t s  of Eq. (B2). Taking Eq. ( A 9 )  i n t o  considera- 

t i o n  one obtains:  

This formula can be derived by successive and repeated 

v a l i d  f o r  m 2 1 and n 2 0. In  deriving Eq. ( B 6 ) ,  the  following 

i d e n t i t y  

j 
-1 n 

( i ne r f c  q)’ = Zinerfc q i n-1 erfc 7 (B8) arl i e r f c  r) = - 

which cons t i tu tes  an obvious extension of t h e  de f in i t i on  (B2)  t o  

t h e  case m = -1,has been taken i n t o  account. 

The recurrence formula (B7)  together  w%th Eqs. (B5)  and (B6)  

a f ford  a rapid computation of t h e  funct ions J .m i n e r f c q .  

tensions t o  negative values of t he  argument a re  r e a d i l y  accomplished 

by means of Eq. (A10)  . 

Their ex- 

m n  
For l a t e r  reference,  t h e  f irst  f e w  funct ions j i e r f c  ‘q , a r e  

e x p l i c i t  and t h e i r  values a t  r, =O a re  given. A s impl i f ied  nota t ion  
* 
c 
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such as 

inerfcq in 

jrni"erfc q L jmin 

i s  adopted. Thus: 

and 

- 
jio= i 0 1  i- - q ( i O Y  - n - i0(17J2) 

f i  

1 ..o 

1 1 1 8 0  

8 

1 1 2 j i = T  iio - T q ( i )  - -  
3 3= 

a 
j i = (i) '  - ji qj i  - j i 

T o  conclude, t h e  in tegra l :  

F = Jimerfc t inerfc t d t  

77 

w i l l  be evaluated, 
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Repeated in tegra t ions  by p a r t s  and consideration of 

Eq. (B6) yie ld :  

0313 1 

when n-m = 2h +1, and 

when n-m = 2h. 

APPENDIX C 

Expl i c i t  expressions for some of the  funct ions fi and of 

t h e i r  der iva t ives  a r e  herein given i n  terms of t h e  funct ions 

imerfc and j i e r f c  ( see  Appendices A and B),  The same 

simplif ied notations as those used i n  Eq. (Bll) are adopted. 

m n  
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F i r s t  approximation - 

. 

1 
1 2  

? 
f _- 1 i o  
1- 2 

Second approximation - 

Third approximation - 

1 1 
f = F + F (-00) fl 
3 3  3 

F =  -i O 1  [ - + l  ( C2-1) + (1”)” + 4% 3 1  - 1 - 3%) ]+ 
3 2 4 %  2 
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APPENDIX D 

In t h i s  appendix t h e  so lu t ion  given by &rtlerl is  first‘ 

out l ined  and subsequently expressed i n  terms of t h e  functkons 

tabulated i n  Tables I through 111. 

The equation solved by Gortler’ can be wr i t ten  as :  

I l l  g +2ggtt=0 

sub Sect t o  t h e  boundary conditions 

1 
g (+oo)=l + A 

g’ (o)=l 
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wherein : 

The t h i r d  boundary condition amounts t o  imposing the  condition 

t h a t  t he  ve loc i ty  along the  streamline through t h e  or ig in  be equal t o  

the arithmetical mean of t h e  corresponding values of t h e  free streams. 

The general solut ion i s  given by t he  series: 
- 

g = c  h g  
i i 

wherein the g ' s  can be expressed by: 

CT t 

w f  t h  



i-1 

h=o 
Ti(a) = -2 c 

The f irst  two terms of 

h+l i-h 
I 

these s e r i e s  are e a s i l y  expressed i n  terms 

of the function f and.they should be considered sa t i s fac tory  to  any 

purpose since the series given by E q .  (03)  i s  r a the r  rapidly convergent. 

After f e w  manipulations, it appears t ha t :  

g (a) = 2f (a) + a - 2J7t f;(o) 
1 1 

and 

where e r f c  a and i e r f c  0 are  the  complementary e r r o r  function and 

the f i rs t  in t eg ra l  of the  complementary e r ror  funct ion respectively 

(see Appendix A) ., 

By means of Eqs (D6) and (D7)  the  first t w o  approximations t o  

the Blasius function w i t h  the  Ggrt ler  boundary condition can be 

e a s i l y  computed from the  values tabulated i n  Tables I through 111. 

c 



T A B U  I 31. 

B l a s i u s  Eqrration 

c 

t i t h  Three-Point Boundary Cond*tions - Valuesof fi 

0 .01 

0 .02 

3.04 

0 ,06 

0 .08 

13 .10 

c! .12 

0 .14 

0 ,I6 

0 .18 

0.20 

0.30 

3.40 

0.50 

0.60 

0 .70 

0.80 

0.90 

1,oo 

L 1.20 

-. 0050 
- e  0099 

- . a195 

-. 0290 

-. 0382 

- .W72 

- 0559 

- .0&5 

-. 0728 

-. 0809 
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-.l250 
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-. 18227 
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-. 22205 
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- 0  24799 
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.0050 

.0101 
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.0310 

.N18 

.0528 

. o m  

0755 

.0872 

0991 

.1112 

.1750 

.2440 
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56349 

.65201 

074303 

093093 

.0004 

.0009 

.0017 

.0025 

.go32 
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. o o w  

.0050 

.oo* 

.0058 
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* 0075 
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0 0037 

-0016 

- e 0005 
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-.0077 

-. 0090 
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Blasius Equation With Three-Point Boundary Conditions - Valuesof fi 

5 f& 5 )  
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1.60 
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2.20 

2.40 

2.60 

2.80 

3.00 
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- .28086 
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2821 
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1.91809 

2.1189 

2 3179 

2 0 5179 

2 7179 

- 0085 

-. 0102 

- . 0112 
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- 0 1199 

- . $238 

- a 1268 
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-. 1289 
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TABLE 11 33 
Blasius Equation wi th  Three-Point B o u n ~ ~ r y  Con i t i o n s  - Valuesof fi 

5 
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.OS66 
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-0211 
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.0201 
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,0147 
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- 0 0011 
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. 0 3 ~  

0338 

0371 
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.&76 
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34 TABLE II(contd)  

Blagiius Equation With Three Point Boundary Conditions - Valueof  f i  

.60 

.80 

2.00 

2.20 

2 

2.60 

2.80 

3.00 

- . o n 8  

- .0054 
- .0023 

- .0009 
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0 0000 
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0 0000 
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TABLE III 35 
Blasiys Equation With Three Point  Boundary Conditions - Values of f;' 

c *  f;' 

.5642 * 5642 - e 1410 - 14105 
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16 
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Blasius Equation With Three Point Boundary Conditions - Values of fi 
1 1  

5 f;' ( 5 )  
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